Russelectric Attends ASHE Annual Conference

July 17, 2018

Russelectric, a manufacturer of automatic transfer switches and power control systems and solutions, is attending the ASHE Annual Conference and Technical Exhibition, held July 15-18 in Seattle, Washington. ASHE is a national conference and exhibition for healthcare facility management and engineering professionals. Russelectric will showcase their Automatic Transfer Switch systems and their Distributed Energy Controller (or RDEC) at booth 429.

Russelectric’s Automatic Transfer Switches are high-speed switching devices designed to transfer electrical loads from a preferred power source to an alternate power source when voltage and/or frequency varies from preset limits, and to retransfer loads when the preferred source is restored. A quality ATS can be the difference in saving lives in the healthcare field. Loss of power in a hospital, for example, can be catastrophic, and the Russelectric ATS can help prevent such failures from occurring. Two full-sized ATS systems will be on display at Russlectric’s booth at the ASHE Conference.

In addition to the ATS, Russelectric is also showcasing its RDEC (Russelectric Distributed Energy Controller). The RDEC is a fully integrated controller for complex, mission critical distributed energy systems, ranging from back-up generation and demand management to fully functional microgrids. At the core of each RDEC is the ability of Russelectric’s transfer switches, switchgear, and power controller to provide seamless physical, data, and control integration of a facility’s onsite demand and generation assets. At the upcoming ASHE Conference, Russelectric will be operating an interactive kiosk to showcase RDEC for visitors to the Russelectric booth.

Read the original article here: https://www.healthcarefacilitiestoday.com/posts/details.aspx?id=18978

Rex Hospital adopts customized SCADA system to manage emergency power system

Rex Hospital in Raleigh, N.C., is the flagship hospital of UNC Rex Healthcare. The growing facility’s 2,000 physicians and nurses treat tens of thousands of inpatients each year. That number is expected to grow as the hospital has proposed adding a seven-story heart center and possibly a cancer center.

In the midst of this growth, Mike Raynor, retired facilities services director, knew that the hospital would have to invest in its emergency power system to keep up with patient demand. The hospital previously operated an open-transition power system that relied on generators and fuel tanks on flatbed trucks to provide additional capacity during construction or when adequate power could not be delivered to the hospital. Raynor presented a proposal to hospital leadership to invest in a fail-safe, closed-transition system that would allow for transfer between utility and generator sources without a power interruption to the hospital.

The design meant replacing the utility substation and making it more reliable, as well as relocating the switches and switchgear from cramped quarters in the main hospital building to a newly constructed central energy plant. The entire project and system switchover was completed with only a single, planned 10-second outage. The new comprehensive power system provides the hospital with more reliability, more redundancy and more flexibility.

In addition to the new equipment, Raynor knew that investing in specialized software to optimize the system’s management was worth the up-front cost. The hospital worked closely with Russelectric Inc. to design a supervisory control and data acquisition (SCADA) software system.

Russelectric, based in Hingham, Mass., develops systems that can provide sophisticated control functions, including emergency/standby power, peak shaving, load curtailment, utility paralleling, cogeneration and prime power.

The software provides interactive monitoring, real-time and historical trending, distributed networking, alarm management, and comprehensive reports around the clock for every detail of the entire power system, not only the backup components.

According to Raynor, Russelectric was the only supplier that could meet his team’s specifications. “A project like this requires a high level of support service and time to get a reliable, yet flexible system. None of the other competitors was willing to step up.”

With this system, technicians can fully monitor and control the entire power system from the control room at the central agency plant. An operator uses full-color, point-and-click computer-screen displays at the system console to access and change the system’s programmable logic controller (PLC) setpoints, display any of the analog or digital readouts on switchgear front panels, run a system test or view the alarm history. A dynamic one-line diagram display uses color to indicate the status of the system, including the positions of all power switching devices. Operating parameters are displayed and updated in real time; and flashing lights on the switchgear annunciator panel flash on the SCADA screen. The system also includes event logging, alarm locking and help screens.

The system allows the scheduling of tests and automatically generates regular reports required by The Joint Commission. In the event of an internal failure, the SCADA system can rapidly and automatically configure a path to bypass the failure and re-energize the system without starting the generators.

The SCADA system’s full manual backup was another key advantage. If the touch screen fails, operating personnel can manually open and close breakers, synchronize and parallel the generators onto the bus, and add or shed load. Full manual operation was a vital feature in Rex Hospital choosing this system.

The SCADA system includes a simulator that shows trainees what to expect when they lose a feed, open or close a breaker, or add or remove load. The simulator uses the same control logic software as the switchgear’s PLCs. The crew also uses the simulator during startup and for trouble-shooting, system improvements, preview testing and tours.

“The hospital needed a modern system that built on what we had already,” Raynor says. “Working closely with Russelectric, we came up with a very sophisticated system, and we’re at a point now where the system is functioning as we expected — all the hospital’s electrical needs are covered.”

View the original article here, https://www.hfmmagazine.com/articles/3399-software-optimizes-hospital-generator

Tim Kelley, director of renewable and storage solutions at Russelectric, highlights the benefits of turning a solar energy system into a microgrid.

An estimated 9 – 10 GW, representing 100,000 commercial solar energy systems, were installed in the US between 2010 and 2017. This is derived from Solar Energy Industries Association data, and the average size of a commercial solar system in California.

These systems present multiple benefits to the businesses they serve, but one is not being exploited to its full potential.

The three benefits of solar energy systems

Installing a solar system can provide three benefits; the first is a reduction in the cost of energy by generating electricity at a lower cost than the utility.

The second is sustainability, as there are no emissions or greenhouse gases associated with producing electricity from the sun.

The third benefit, which in most cases has yet to be realized, is the provision of backup power. After recent hurricanes, such as Sandy, the owners of many facilities were surprised to realize that their solar systems did not provide power during grid outages. Virtually all existing commercial solar energy systems are designed to perform this way.

An inverter normally shuts down solar systems if the grid goes down and only allows them to turn back on when grid power has returned and is stable. This is a safety precaution; the utility cannot risk power being fed into the grid while workers repair it.

Leveraging solar energy systems for business continuity

It is possible to convert an existing solar system into a microgrid, allowing it to disconnect from the main grid and power a commercial facility’s load during an outage.

To achieve this, battery storage or traditional emergency generation, such as a diesel generator, is required to offset the intermittency of solar power. Also required is a distributed energy or microgrid control system to coordinate and optimize the facility’s demands and generation.

For facilities with existing backup generation and solar energy systems, it is relatively easy to upgrade system controls and integrate the existing solar system into a microgrid.

With the declining prices of battery storage, and control systems like the ones Russelectric have been making for the past 50 years, it is possible to achieve the third benefit of solar energy systems.

There are four factors to consider when converting a solar energy system to a microgrid.

Ownership

First, it is common for a third party to finance and own an existing solar system, and sell the electricity generated back to the facility owner at a price lower than its utility rate.

In these situations, the respective owners will have to modify their existing agreement to reflect the changes to the original system. In cases where the facility owner also owns the solar system, having a single stakeholder simplifies the decision-making.

Interconnection and metering agreements

Second, the system owner or system integrator should check the existing utility interconnection and net metering agreements, and ensure that changes to the solar energy system will be permitted.

Return on investment

The third factor is calculating the payback, or return on investment. Adding business continuity functionality to a facility is like buying insurance, the value of which varies by company. Industrial manufacturers, data centers, and office parks will all have differing requirements.

For example, if a dairy processing facility pasteurizing raw milk loses power for longer than 30 – 60 seconds, it may have to discard the milk being processed and perform a full shutdown and sterilization of its production line. A data center typically cannot allow any downtime, whereas a commercial office park might place less value on business continuity.

The unique magnitude of the value can be self-diagnosed. Key questions to ask are: How long does my business need to continue operating if the grid is lost and what is the value of that continued uptime? Is it 15 minutes to carry out a controlled shut down, or is it multiple hours or days to continue production? This consideration impacts the size, complexity, and cost of the microgrid.

Most solar energy systems were originally justified because they allow the user to avoid higher cost utility supplied power. Part of working out the payback of converting a solar energy system to a microgrid involves revisiting these original financial assumptions.

Solar energy is generated during the day, when the cost of electricity is historically the highest. But in some states, like California, the huge amount of installed solar generation is reversing the trend. The utilities are starting to adjust rates to shift the peak period to the evening, when solar does not generate.

This is another good reason to consider adding energy storage. In addition, to providing power during an outage, it can be charged up during the day and released in the evening, when the sun is not shining, but electricity prices are high.

Reducing the use of thermal backup generation

Assuming the facility has thermal backup generation, a fourth potential benefit is the reduction of its use. This means less spent on fuel, fewer emissions, and avoidance of potential penalties for exceeding emissions limits.

Additionally, despite fuel supply contracts guaranteeing fuel replenishment for emergency generators, in a severe natural disaster this may not be possible. A solar system depends only on sunshine, providing additional security of power supply in an emergency.

Turning your existing solar energy system to a microgrid can unlock cost and resilience benefits. This is low hanging fruit for commercial or industrial facilities that already have solar energy systems and other onsite power generation, with some distributed energy control systems in place.

Tim Kelley is the director of renewable and storage solutions at RussElectric.

 

View the original article here, https://microgridknowledge.com/russelectric-commercial-solar-microgrid/

Russelectric, a leading manufacturer of automatic transfer switches and power control systems, manufactures UL-listed cogeneration systems for combined heat and power (CHP) applications in which the generator sets are run to serve the connected load and heat is also recovered for other uses.

All Russelectric cogeneration systems are UL listed, offer programmable logic controller (PLC) system controls, and are supervisory control and data acquisition (SCADA)-capable. They feature utility/generator paralleling control, and provide active synchronization and soft loading. Systems use a utility-approved interconnecting protective relay system. Russelectric cogeneration power control switchgear may have additional controls and monitoring to optimize heat recovery. The systems can be designed to operate in parallel with the utility to optimize power and heat balance.

Components are selected to assure the reliable operation of these critical systems. Utility-grade instruments provide both accuracy and visibility. Heavy-duty, switchboard type control switches are rated at a minimum of 25 amps. Protective relays for generator and utility power are utility-grade. UL-listed power circuit breakers with stored energy closing mechanisms provide 5-cycle (maximum) closing for paralleling. Drawout circuit breakers simplify maintenance.

For more information visit www.russelectric.com.

View the original article here, https://www.powerelectronicsnews.com/news/russelectric-cogeneration-systems-offer-generator-paralleling-control-active-synchronization-and-soft-loading

05/09/2018 | Press Release

Offering generator paralleling control, active synchronization and soft loading

Hingham, MA – Russelectric, a leading manufacturer of automatic transfer switches and power control systems, manufactures UL-listed cogeneration systems for combined heat and power (CHP) applications in which the generator sets are run to serve the connected load and heat is also recovered for other uses.

All Russelectric cogeneration systems are UL listed, offer programmable logic controller (PLC) system controls, and are supervisory control and data acquisition (SCADA)-capable. They feature utility/generator paralleling control, and provide active synchronization and soft loading. Systems use a utility-approved interconnecting protective relay system.

Russelectric cogeneration power control switchgear may have additional controls and monitoring to optimize heat recovery. The systems can be designed to operate in parallel with the utility to optimize power and heat balance.

Designed and built for mission critical facilities, Russelectric cogeneration systems are designed to provide maximum protection for operators and maintenance personnel and to minimize the danger of operator error. Russelectric manufactures complete systems in-house. All enclosures, bus, and other structural components are fabricated and fully assembled in Russelectric plants. Factory testing of complete systems is performed prior to shipment.

Components are selected to assure the reliable operation of these critical systems. Utility-grade instruments provide both accuracy and visibility. Heavy-duty, switchboard type control switches are rated at a minimum of 25 amps. Protective relays for generator and utility power are utility-grade. UL-listed power circuit breakers with stored energy closing mechanisms provide 5-cycle (maximum) closing for paralleling. Drawout circuit breakers simplify maintenance.

About Russelectric

Founded in 1955, Russelectric® provides high-integrity power control solutions for mission critical applications in the healthcare, information technology, telecommunication, water treatment, and renewable energy markets. The company maintains vertically-integrated manufacturing facilities in Massachusetts and Oklahoma, where it designs and builds a full line of automatic transfer switches, switchgear, and controls.  Russelectric products carry the longest and most comprehensive warranty in the industry, and are backed by a team of expert factory-direct field service engineers. To learn more about Russelectric products and the company’s commitment to customer satisfaction, visit www.russelectric.com, call (781) 749-6000, or email info@russelectric.com.

View the original article here, http://www.powermag.com/press-releases/russelectric-cogeneration-systems-for-chp-applications

May 6, 2018

Source: Russelectric

HINGHAM, MA, MAY 7, 2018 — Russelectric, a leading manufacturer of power control systems and automatic transfer switches, announced this week that it has been awarded the contract to supply Charlotte Water with paralleling switchgear for their water and wastewater treatment facilities. The paralleling switchgear will monitor the incoming utility power and in the event of a utility power failure, ensure the transfer of critical emergency backup power to their facility in Charlotte, NC.

Russelectric will engineer and build each of the two generator paralleling control and distribution switchgear systems to control the paralleling operation of three (two present and one future), 4160-volt, three megawatt engine generators. Each system will be designed to provide utility paralleling operation of the engine generators with the local utility, to provide seamless, uninterrupted transfer of power between the on-site engine generators and the incoming utility service. The control system, a Russelectric engineered solution for Charlotte Water, will utilize redundant PLC controls and include full manual capabilities that would allow for operation of the system in the unlikely event of a failure of the redundant PLC based controls. Delivery for the initial system is scheduled for late 2018, with the second scheduled for early 2019.

With more than six decades of experience manufacturing and servicing low and medium voltage paralleling switchgear and transfer switches, Russelectric was selected based on its ability to meet the stringent design criteria, delivery schedule and extensive warranty requirement.

“Russelectric manufactures complete systems in-house, with all bus, enclosures, and other structural components fabricated and fully assembled in Russelectric plants here in the US,” said Stephen McQuaid, Russelectric Switchgear Product Line Manager. “As standard, we also perform comprehensive factory testing of the complete systems prior to shipment.”

To learn more about Russelectric products and the company’s commitment to customer satisfaction, visit www.russelectric.com.

View the oroginalarticle here: https://www.waterworld.com/articles/2018/05/russelectric-to-supply-power-control-system-for-charlotte-water.html

Russelectric – Broken Arrow

 

Ensures seamless delivery of normal and emergency power to all loads

By Russelectric

Rex Hospital, in Raleigh, NC, has upgraded its backup power system, ensuring the seamless delivery of both normal and emergency power to all its existing loads – as well as those anticipated by growth over the next several decades, with the addition of a powerful supervisory control and data acquisition (SCADA) system from Russelectric. Customized to the hospital’s unique load profile and specific needs, the system provides Rex with significant increases in reliability, redundancy, and flexibility.

Hospital seeks reliable system with superior equipment

Russ12Rex Hospital, the flagship of not-for-profit Rex Healthcare, treats tens of thousands of inpatients every year. The staff includes over 2,000 physicians and nurses, who also provide services at affiliated clinics and other facilities throughout the surrounding area.

As its facility continued to expand, Rex looked to upgrade its existing open transition power system design, which included an interruption of service during the transition between utility power and generator power. The system also relied on generators and fuel tanks on flatbed trucks to provide additional capacity during construction or when adequate power could not be delivered to the hospital load.

Facility services director Mike Raynor proposed a fail-safe, closed transition system that would allow for a transfer between utility and generator sources without interruption of power to the hospital (which is a more costly approach to open transition systems where additional power interruptions can happen on retransfers). Says Raynor, “People would have noticed a difference if the power went out or came back on, like when there is an outage at your house. There is just no need for a hospital to go through that in this day and age.”

“It would have taken us back many years,” agrees Raynor’s longtime engineering consultant, Travis Jackson. “We like closed transition, and we already had the capability to do paralleling and load curtailment. We certainly didn’t want to give those up.”

The team understood the advantages of the closed transition design and convinced management that the slightly higher first cost of a closed transition system would deliver cost savings over the life of the system and would be well worth the investment over the long term. They successfully presented their case to the hospital’s executives, medical staff, and regulatory officials.

New system offers greater reliability, more redundancy and increased flexibility

The design implemented meant replacing the utility substation and making it more reliable, as well as relocating the switches and switchgear from cramped quarters in the main hospital building to a newly constructed central energy plant. The entire project and system switchover was completed with only a single, planned 10-second outage.

The new comprehensive power system provides the hospital with more reliability, more redundancy, and more flexibility. The plan takes anticipated growth into account, with enough emergency capacity (8.25 megawatt) to handle a proposed 7-story heart center and future cancer center addition.

Rex uses an N+1 arrangement – which means it can take one generator out of service and still retain adequate capacity. The plan replaced three 1.25 MW generators with two Caterpillar 3MW generators, and kept an existing Caterpillar 2.25 MW generator. There is room to add more switchgear and circuit breakers. An automatic transfer switch and an uninterruptible power system have been added to protect the hospital’s data center.

There are two 40,000 gallon underground fuel tanks, and the system maintains fuel in each generator’s emergency 150-gallon “day tank” at all times. Fuel capacity for the previous system was 60,000 gallons – one-third less than the new system. With all tanks full, the hospital could meet its own peak demand (about 5,200 kW) for almost six days. However, since that peak is reached only for short periods on the warmest summer days, the hospital could probably operate under its own power for more than nine days for much of the year.

The hospital’s new substation consists of four utility-owned, pad mounted 2,500 kilovolt-amp (kVA) paralleled transformers providing a total utility capacity of 10,000 kVA (10 mVA). The hospital assumes ownership at the transformer secondaries, which are connected to the hospital’s outdoor switchgear. When an outage occurs, the switchgear automatically disconnects from the utility by opening four 1,200 amp circuit breakers, and simultaneously sends a signal to start the generators.

Based on its present peak load, the hospital can continue to operate without interruption should there be a loss of one transformer. If two or more utility transformers were lost, the hospital’s generators will start and parallel while the outdoor switchgear disconnects from the utility system. The hospital will then remain on the generator source until the utility source is restored, at which time the generators will parallel with the recovered source. Once the utility voltage has stabilized, it will reconnect to the hospital load without interruption.

The utility’s transformer primaries are served by two 25 kV utility feeders from separate distribution systems. Though both are energized, the hospital can draw from only one at a time. If the active feeder is lost, the utility can manually switch the hospital to the backup 25 kV source at the hospital’s substation.

New SCADA system enables monitoring and control

Russ13Another important feature of Rex Hospital’s comprehensive power system is the SCADA system, designed by Russelectric. Based in Hingham, Massachusetts, Russelectric develops systems that can provide sophisticated control functions, including emergency/standby power, peak shaving, load curtailment, utility paralleling, cogeneration, and prime power.

The SCADA system includes software and screen displays customized for the hospital’s needs. It provides interactive monitoring, real-time and historical trending, distributed networking, alarm management, and comprehensive reports around the clock for every detail of the entire power system, not only the backup components.

With this system, technicians can fully monitor and control the entire power system from the control room at the central agency plant. An operator uses full-color “point and click” computer-screen displays at the system console to access and change the system’s PLC setpoints, display any of the analog or digital readouts on switchgear front panels, run a system test, or view the alarm history. A dynamic one-line diagram display uses color to indicate the status of the system, including the positions of all power switching devices. Operating parameters are displayed and updated in real time; flashing lights on the switchgear annunciator panel also flash on the SCADA screen. The system also includes event logging, alarm locking, and help screens.

The system allows the scheduling of tests and automatically generates regular reports required by the Joint Commission on the Accreditation of Healthcare Organizations. In the event of an internal failure, the SCADA system can rapidly and automatically configure a path to bypass the failure and re-energize the system without starting the generators.

The SCADA system’s full manual backup was another key advantage. If the touchscreen fails, operating personnel can manually open and close breakers, synchronize and parallel the generators onto the bus, and add or shed load. Other manufacturers’ systems do not provide for full manual operation.

The SCADA system includes a simulator that shows trainees what to expect when they lose a feed, open or close a breaker, or add or remove load. The simulator uses the same control logic software as the switchgear’s programmable logic controllers. The crew also uses the simulator during startup and for trouble-shooting, system improvements, preview testing, and tours.

According to Raynor, Russelectric was the only supplier that could meet his team’s specifications. “A project like this requires a high level of support service and time to get a reliable, yet flexible system. None of the other competitors was willing to step up.” Consulting engineer Travis Jackson, PE, agrees, adding that the Russelectric equipment has welded construction and is sturdy, durable, and extremely reliable.

New system enables peak shaving

The new system enables the hospital to do peak shaving, supplying some of the hospital’s power while the utility is supplying the rest, thereby saving on utility demand charges. The system does not contribute power to the grid, but its load curtailment capabilities means it can respond quickly if the utility asks the hospital to reduce demand on the grid by a specified amount. The resulting contractual rebates lower the hospital’s overall energy costs. For example, if the utility experiences an unusually high demand for power for air conditioning during a heat wave, under their contract they may ask the hospital to generate its own power for a specified amount of time. On average this type of request happens only once or twice per year.

Summing it all up

Commenting on the success of the project, facility services director Raynor says, “The hospital needed a new and modern system that built on what we had already. Working closely with Russelectric, we came up with a very sophisticated system, and we’re at a point now where the system is functioning as we expected ― all the hospital’s electrical needs are covered.”

View the original article here: https://www.drj.com/industry/industry-hot-news/emergency-power-system-gives-hospital-reliability-redundancy-and-flexibility.html